
CSIT 254 - Classes and Java Review 9/2/2019

Brower 1

© 2010 Pearson Addison-Wesley. All rights reserved.

Addison Wesley

is an imprint of

CSIT 254 - Data Structures

Classes a.k.a. Java Review

Classes

by Tony Gaddis (3rd, 4th, 5th editions)
Mucked up by Brower

© 2010 Pearson Addison-Wesley. All rights reserved. 2

Object-Oriented Programming
Object

Data (Fields)

typically private to this object

Methods That

Operate on the Data

Code

Outside the

Object

Recap

CSIT 254 - Classes and Java Review 9/2/2019

Brower 2

© 2010 Pearson Addison-Wesley. All rights reserved.

Object-Oriented Programming
• Object-oriented

programming combines data

and behavior via

encapsulation.

• Data hiding is the ability of

an object to hide data from

other objects in the program.

• Only an object’s methods

should be able to directly

manipulate its data.

• Other objects are allowed

manipulate an object’s data

via the object’s methods.

• Data hiding is important for

several reasons.

– It protects the data from

accidental corruption by

outside objects.

– It hides the details of how an

object works, so the

programmer can concentrate on

using it.

– It allows the maintainer of the

object to have the ability to

modify the internal functioning

of the object without

“breaking” someone else's

code.

3

Recap

© 2010 Pearson Addison-Wesley. All rights reserved. 4

Object-Oriented Programming
Code Reusability

• Object-Oriented Programming (OOP) has
encouraged object reusability.

• A software object contains data and methods that
represents a specific concept or service.

• An object is not a stand-alone program.

• Objects can be used by programs that need the
object’s service.

• Reuse of code promotes the rapid development of
larger software projects.

Recap

CSIT 254 - Classes and Java Review 9/2/2019

Brower 3

© 2010 Pearson Addison-Wesley. All rights reserved. 5

Classes and Instances

• Each instance of the String class contains different

data.

• The instances are all share the same design.

• Each instance has all of the attributes and methods that
were defined in the String class.

• Classes are defined to represent a single concept or

service.

Recap

© 2010 Pearson Addison-Wesley. All rights reserved.

Converting the UML Diagram to Code

Rectangle

- width : double

- length : double

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

This is a portion of Rectangle public class Rectangle

{

private double width;

private double length;

public void setWidth(double w)

{ width = w;

}

public void setLength(double len)

{ length = len;

}

public double getWidth()

{ return width;

}

public double getLength()

{ return length;

}

public double getArea()

{ return length * width;

}

} 6

CSIT 254 - Classes and Java Review 9/2/2019

Brower 4

© 2010 Pearson Addison-Wesley. All rights reserved.

Rectangle - Complete UML

7

Rectangle

- width : double

- length : double

+Rectangle(len:double, w:double)

+Rectangle()

+Rectangle(object2 : Rectangle)

+ setWidth(w : double) : void

+ setLength(len : double): void

+ set(len : double, w : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

+ toString() : String

+ equals(otherRectangle : Rectangle) : Boolean

+ copy() : Rectangle

Notice there is no

return type listed

for constructors.

© 2010 Pearson Addison-Wesley. All rights reserved. 8

States of Three Different Rectangle

Objects

address
15.0

12.0

length:

width:

address
10.0

14.0

length:

width:

address
20.0

30.0

length:

width:

The kitchen variable

holds the address of a

Rectangle Object.

The bedroom variable

holds the address of a

Rectangle Object.

The den variable

holds the address of a

Rectangle Object.

Recap

RoomAreas.java

CSIT 254 - Classes and Java Review 9/2/2019

Brower 5

© 2010 Pearson Addison-Wesley. All rights reserved. 9

Rectangle Class Constructor Overload

If we were to add the no-arg constructor we wrote
previously to our Rectangle class in addition to the
original constructor we wrote, what would happen
when we execute the following calls?

Rectangle box1 = new Rectangle();

Rectangle box2 = new Rectangle(5.0, 10.0);

The first call would use the no-arg constructor and box1 would
have a length of 1.0 and width of 1.0.

The second call would use the original constructor and box2
would have a length of 5.0 and a width of 10.0.

Recap

RectangleDemo.java

© 2010 Pearson Addison-Wesley. All rights reserved. 10

What is Inheritance?
Generalization vs. Specialization

• Real-life objects are typically specialized versions of
other more general objects.

• The term “Vehicle” describes a very general type of
automobile with numerous characteristics.

• Cars and Trucks are Vehicles
– They share the general characteristics of a Vehicle.

– However, they have special characteristics of their own.
• Trucks have large cargo areas

• Cars have multiple doors (humor me).

• Cars and Trucks are specialized versions of a Vehicle.

CSIT 254 - Classes and Java Review 9/2/2019

Brower 6

© 2010 Pearson Addison-Wesley. All rights reserved. 11

Inheritance

Vehicle

TruckCar

Contains those attributes

and methods that are

shared by all Vehicles.

Contains those attributes and

methods that specific to a Car.

Contains those attributes and

methods that are specific to a

Truck.

See Vehicle.java, Car.java, Truck.java and DemoCarTruck.java

© 2010 Pearson Addison-Wesley. All rights reserved. 12

The “is a” Relationship

• The relationship between a superclass and an inherited
class is called an “is a” relationship.

– A grasshopper “is a” insect.

– A poodle “is a” dog.

– A car “is a” vehicle.

• A specialized object has:

– all of the characteristics of the general object, plus

– additional characteristics that make it special.

• In object-oriented programming, inheritance is used to
create an “is a” relationship among classes.

CSIT 254 - Classes and Java Review 9/2/2019

Brower 7

© 2010 Pearson Addison-Wesley. All rights reserved. 13

The “is a” Relationship

• We can extend the capabilities of a class.

• Inheritance involves a superclass and a subclass.

– The superclass is the general class and

– the subclass is the specialized class.

• The subclass is based on, or extended from, the

superclass.

– Superclasses are also called base classes, and

– subclasses are also called derived classes.

• The relationship of classes can be thought of as parent

classes and child classes.

© 2010 Pearson Addison-Wesley. All rights reserved. 14

Inheritance

• The subclass inherits fields and methods from

the superclass without any of them being

rewritten.

• New fields and methods may be added to the

subclass.

• The Java keyword, extends, is used on the class

header to define the subclass.
public class Car extends Vehicle

CSIT 254 - Classes and Java Review 9/2/2019

Brower 8

© 2010 Pearson Addison-Wesley. All rights reserved. 15

Inheritance, Fields and Methods

• Members of the superclass that are marked private:

– are not inherited by the subclass,

– exist in memory when the object of the subclass is created

– may only be accessed from the subclass by public methods

of the superclass.

• Members of the superclass that are marked public:

– are inherited by the subclass, and

– may be directly accessed from the subclass.

© 2010 Pearson Addison-Wesley. All rights reserved.

Static Class Members

Static fields and static methods do not belong to

a single instance of a class.

To invoke a static method or use a static field,

the class name, rather than the instance name, is

used.

Example:
double val = Math.sqrt(25.0);

Class name Static method

16

CSIT 254 - Classes and Java Review 9/2/2019

Brower 9

© 2010 Pearson Addison-Wesley. All rights reserved.

Static Methods

Methods can also be declared static by placing the static

keyword between the access modifier and the return type of

the method.

public static double milesToKilometers(double miles)

{…}

When a class contains a static method, it is not necessary to

create an instance of the class in order to use the method.

double kilosPerMile = Metric.milesToKilometers(1.0);

Examples: Metric.java, MetricDemo.java

17

© 2010 Pearson Addison-Wesley. All rights reserved.

Static Methods

Static methods are convenient because they

may be called at the class level.

They are typically used to create utility classes,
such as the Math class in the Java Standard

Library.

Static methods may not communicate with

instance fields, only static fields.

18

CSIT 254 - Classes and Java Review 9/2/2019

Brower 10

© 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded Methods
Two or more methods in a class may have the same name; however, their

parameter lists must be different.

public class MyMath{

public static int square(int number){

return number * number;

}

public static double square(double number){

return number * number;

}

}

Example: OverloadingDemo.java

19

See also DisplayNeat.java and OverloadingDemo2.java

and OverloadingDemo3.java

© 2010 Pearson Addison-Wesley. All rights reserved.

Overloaded Methods

Java uses the method signature (name, type of

parameters and order of parameters) to

determine which method to call.

This process is known as binding.

The return type of the method is not part of the

method signature.

Example: Pay.java, WeeklyPay.java

20

CSIT 254 - Classes and Java Review 9/2/2019

Brower 11

© 2010 Pearson Addison-Wesley. All rights reserved.

The toString Method

The toString method of a class can be called
explicitly:

Vehicle sampleVehicle = new Vehicle("silly",1972);

System.out.println(sampleVehicle.toString());

However, the toString method does not have to be
called explicitly but is called implicitly whenever you
pass an object of the class to println or print.

Car sampleCar = new Car("Chevy Corvette",2014,2);

System.out.println(sampleCar);

21

See DemoCarTruck.java

© 2010 Pearson Addison-Wesley. All rights reserved.

The toString method

The toString method is also called implicitly

whenever you concatenate an object of the class with a

string.

Truck sampleTruck = new Truck("U-Haul Box Truck",2013,1611);

System.out.println(sampleTruck + " it's big!");

22

CSIT 254 - Classes and Java Review 9/2/2019

Brower 12

© 2010 Pearson Addison-Wesley. All rights reserved.

The toString Method

All objects have a toString method that returns the class
name and a hash of the memory address of the object.
The box for the pizza is: Rectangle@276af2

We can override the default method with our own to print
out more useful information.

Examples: Pizza.java and PizzaDemo.java

23

public String toString()

{

return "Rectangle L: " + length + " W: " + width;

}

© 2010 Pearson Addison-Wesley. All rights reserved.

The equals Method

When the == operator is used with reference variables,

the memory address of the objects are compared.

The contents of the objects are not compared.

All objects have an equals method.

The default operation of the equals method is to

compare memory addresses of the objects (just like the
== operator).

24

CSIT 254 - Classes and Java Review 9/2/2019

Brower 13

© 2010 Pearson Addison-Wesley. All rights reserved.

The equals Method

The Rectangle class has an equals method.

If we try the following:
Rectangle rectangle1 = new Rectangle(3.0, 4.0);

Rectangle rectangle2 = new Rectangle(3.0, 4.0);

if (rectangle1 == rectangle2) // This is a mistake.

System.out.println("The objects are the same.");

else

System.out.println("The objects are not the same.");

only the addresses of the objects are compared

25

© 2010 Pearson Addison-Wesley. All rights reserved.

The equals Method

Compare objects by their contents rather than by their memory addresses.

Instead of simply using the == operator to compare two Rectangle
objects, we should use the equals method.

public boolean equals(Rectangle otherRectangle)

{

boolean alike;

if (length == otherRectangle.getLength()

&& width == otherRectangle.getWidth())

alike = true;

else

alike = false;

return alike;

}

See examples: RectangleCompare.java, PizzaCompare.java

26

CSIT 254 - Classes and Java Review 9/2/2019

Brower 14

© 2010 Pearson Addison-Wesley. All rights reserved.

The Object Class

All Java classes are directly or indirectly derived from a
class named Object.

Object is in the java.lang package.

Any class that does not specify the extends keyword
is automatically derived from the Object class.
public class MyClass

{

//this class is derived from Object.

}

Ultimately, every class is derived from the Object
class.

27

© 2010 Pearson Addison-Wesley. All rights reserved.

The Object Class

Because every class is directly or indirectly derived from the
Object class:

every class inherits the Object class’s members.

example: toString and equals.

In the Object class, the toString method returns a string
containing the object’s class name and a hash of its memory
address.

The equals method accepts the address of an object as its
argument and returns true if it is the same as the calling object’s
address.

Example: equals() in Rectangle.java

28

CSIT 254 - Classes and Java Review 9/2/2019

Brower 15

© 2010 Pearson Addison-Wesley. All rights reserved.

Methods That Copy Objects

There are two ways to copy an object.

You cannot use the assignment operator to copy
reference types

Reference only copy

This is simply copying the address of an object into
another reference variable.

Deep copy (correct)

This involves creating a new instance of the class and
copying the values from one object into the new object.

Example: ObjectNotCopy.java then
ObjectCopy.java

29

© 2010 Pearson Addison-Wesley. All rights reserved.

Copy Constructors

A copy constructor accepts an existing object of the same class
and clones it.

public Rectangle(Rectangle object2)

{

length = object2.getLength();

width = object2.getWidth();

}

// Create a Rectangle object

Rectangle rectangle1 = new Rectangle(8.5, 11.0);

//Create rectangle2, a copy of rectangle1

Rectangle rectangle2 = new Rectangle(rectangle1);

30

See ObjectCopy2.java

CSIT 254 - Classes and Java Review 9/2/2019

Brower 16

© 2010 Pearson Addison-Wesley. All rights reserved.

Aggregation

Creating an instance of one class as a reference

in another class is called object aggregation.

Aggregation creates a “has a” relationship

between objects.

Examples:
Instructor.java, Textbook.java, Course.java, CourseDemo.java

31

© 2010 Pearson Addison-Wesley. All rights reserved.

Aggregation in UML Diagrams

Course

- courseName : String

- Instructor : Instructor

- textBook : TextBook

+ Course(name : String, instr : Instructor, text : TextBook)

+ getName() : String

+ getInstructor() : Instructor

+ getTextBook() : TextBook

+ toString() : String

TextBook

- title : String

- author : String

- publisher : String

+ TextBook(title : String, author : String,

publisher : String)

+ TextBook(object2 : TextBook)

+ set(title : String, author : String,

publisher : String) : void

+ toString() : String

Instructor

- lastName : String

- firstName : String

- officeNumber : String

+ Instructor(lname : String, fname : String,

office : String)

+Instructor(object2 : Instructor)

+set(lname : String, fname : String,

office : String): void

+ toString() : String

32

CSIT 254 - Classes and Java Review 9/2/2019

Brower 17

© 2010 Pearson Addison-Wesley. All rights reserved.

Returning References to Private Fields

Avoid returning references to private data

elements.

Returning references to private variables will

allow any object that receives the reference to

modify the variable.

33

© 2010 Pearson Addison-Wesley. All rights reserved.

Null References

A null reference is a reference variable that points to nothing.

If a reference is null, then no operations can be performed on it.

References can be tested to see if they point to null prior to
being used.

if(name != null)

System.out.println("Name is: " +

name.toUpperCase());

Examples: FullName.java, NameTester.java, NameTester2.java

34

CSIT 254 - Classes and Java Review 9/2/2019

Brower 18

© 2010 Pearson Addison-Wesley. All rights reserved.

Garbage Collection

When objects are no longer needed they should

be destroyed.

This frees up the memory that they consumed.

Java handles all of the memory operations for

you.

Simply set the reference to null and Java will

reclaim the memory.

35

© 2010 Pearson Addison-Wesley. All rights reserved.

Garbage Collection
The Java Virtual Machine has a process that runs in the
background that reclaims memory from released objects.

The garbage collector will reclaim memory from any object that
no longer has a valid reference pointing to it.

InventoryItem item1 = new InventoryItem ("Wrench", 20);

InventoryItem item2 = item1;

This sets item1 and item2 to point to the same object.

36

CSIT 254 - Classes and Java Review 9/2/2019

Brower 19

© 2010 Pearson Addison-Wesley. All rights reserved.

Garbage Collection

Address

An InventoryItem object

description:

units:

“Wrench”

20
item1

Addressitem2

Here, both item1 and item2 point to the same

instance of the InventoryItem class.

37

© 2010 Pearson Addison-Wesley. All rights reserved.

Garbage Collection

null

An InventoryItem object

description:

units:

“Wrench”

20item1

Addressitem2

However, by running the command:

item1 = null;

only item2 will be pointing to the object.

38

CSIT 254 - Classes and Java Review 9/2/2019

Brower 20

© 2010 Pearson Addison-Wesley. All rights reserved.

Garbage Collection

null

An InventoryItem object

description:

units:

“Wrench”

20
item1

nullitem2

If we now run the command:

item2 = null;

neither item1 or item2 will be pointing to the object.

Since there are no valid references to this

object, it is now available for the garbage

collector to reclaim.

39

© 2010 Pearson Addison-Wesley. All rights reserved.

Garbage Collection

null

An InventoryItem object

description:

units:

“Wrench”

20
item1

nullitem2
The garbage collector reclaims

the memory the next time it runs

in the background.

40

CSIT 254 - Classes and Java Review 9/2/2019

Brower 21

© 2010 Pearson Addison-Wesley. All rights reserved.

Polymorphism

A reference variable can reference objects of classes that are

derived from the variable’s class.

Vehicle sampleVehicle

We can use the sampleVehicle variable to reference a
Vehicle object.

sampleVehicle = new Vehicle("silly",1972);

The Vehicle class is also used as the superclass for the Car

class.

An object of the Car class is a Vehicle object.

41

© 2010 Pearson Addison-Wesley. All rights reserved.

Polymorphism

A Vehicle variable can be used to reference a Car object.

Vehicle sampleCar = new Car("Chevy Corvette",2014,2);

This statement creates a Car object and stores the object’s address in the

sampleCar Vehicle object variable.

This is an example of polymorphism.

The term polymorphism means the ability to take many forms.

In Java, a reference variable is polymorphic because it can reference objects

of types different from its own, as long as those types are subclasses of its

type.

42

CSIT 254 - Classes and Java Review 9/2/2019

Brower 22

© 2010 Pearson Addison-Wesley. All rights reserved.

Polymorphism

Other legal polymorphic reference:

Vehicle sampleTruck = new Truck("U-Haul Box Truck",2013,1611);

The Vehicle class has methods: setYearModel, getYearModel,

setMake, and getMake.

A Vehicle variable can be used to call only those methods.

Vehicle sampleCar = new Car("Chevy Corvette",2014,2);

System.out.println(sampleCar.getMake()); // This works.

System.out.println(sampleCar.getYearModel()); // This works.

System.out.println(sampleCar.getNumDoors()); // ERROR!

• However this will work:

if (sampleCar instanceof Car)

System.out.println("\n'sampleCar' is a Car - doors “

+ ((Car) sampleCar).getNumDoors());

43

© 2010 Pearson Addison-Wesley. All rights reserved.

Abstract Classes

An abstract class cannot be instantiated, but other classes are

derived from it.

An Abstract class serves as a superclass for other classes.

The abstract class represents the generic or abstract form of all

the classes that are derived from it.

A class becomes abstract when you place the abstract key word

in the class definition.

public abstract class ClassName

44

CSIT 254 - Classes and Java Review 9/2/2019

Brower 23

© 2010 Pearson Addison-Wesley. All rights reserved.

Abstract Methods

An abstract method has no body and must be overridden

in a subclass.

An abstract method is a method that appears in a

superclass, but expects to be overridden in a subclass.

An abstract method has only a header and no body.
AccessSpecifier abstract ReturnType MethodName(ParameterList);

45

© 2010 Pearson Addison-Wesley. All rights reserved.

Abstract Methods

Notice that the key word abstract appears in the

header, and that the header ends with a semicolon.
public abstract void setValue(int value);

Any class that contains an abstract method is

automatically abstract.

If a subclass fails to override an abstract method, a

compiler error will result.

Abstract methods are used to ensure that a subclass

implements the method.

46

CSIT 254 - Classes and Java Review 9/2/2019

Brower 24

© 2010 Pearson Addison-Wesley. All rights reserved.

Interfaces

An interface is similar to an abstract class that has all abstract
methods.

It cannot be instantiated, and

all of the methods listed in an interface must be written
elsewhere.

The purpose of an interface is to specify behavior for other
classes.

An interface looks similar to a class, except:

the keyword interface is used instead of the keyword
class, and

the methods that are specified in an interface have no bodies,
only headers that are terminated by semicolons.

47

© 2010 Pearson Addison-Wesley. All rights reserved.

Pizza UML

Pizza

- size : int

- numToppings : int

- toppingDescription : String

+Pizza (newSize : int,

newNumToppings : int,

newToppingDescription : String)

+ setSize(newSize : int)

+ setNumToppings (newNumToppings : int)

+ setToppingDescription (newToppingDescription : String)

+ getSize () : int

+ getNumToppings () : int

+ getToppingDescription () : String

+ toString() : String

+ cost() : double

48

PizzaDemo.java references Pizza.java

